Глава 7.1. По-сложни цикли

След като научихме какво представляват и за какво служат for циклите, сега предстои да се запознаем с други видове цикли, както и с някои по-сложни конструкции за цикъл. Те ще разширят познанията ни и ще ни помагат в решаването на по-трудни и по-предизвикателни задачи. По-конкретно, ще разгледаме как се ползват следните програмни конструкции:

  • цикли със стъпка
  • while цикли
  • do-while цикли
  • безкрайни цикли

В настоящата тема ще разберем и какво представлява операторът break, както и как чрез него да прекъснем един цикъл.

Видео

Гледайте видео-урок по тази глава тук: https://www.youtube.com/watch?v=JWaS7V0QlGk.

Цикли със стъпка

В глава 5.1 Повторения (цикли) научихме как работи for цикълът и вече знаем кога и с каква цел да го използваме. В тази тема ще обърнем внимание на една определена и много важна част от конструкцията му, а именно стъпката.

Какво представлява стъпката?

Стъпката е тази част от конструкцията на for цикъла, която указва с колко да се увеличи или намали стойността на водещата му променлива. Тя се декларира последна в скелета на for цикъла.

Най-често е с размер 1 и в такъв случай, вместо да пишем i += 1 или i -= 1, можем да използваме операторите i++ или i--. Ако искаме стъпката ни да е различна от 1, при увеличение използваме оператора i += (размера на стъпката), а при намаляване i -= (размера на стъпката). При стъпка 3, цикълът би изглеждал по следния начин:

Следва поредица от примерни задачи, решението на които ще ни помогне да разберем по-добре употребата на стъпката във for цикъл.

Пример: числата от 1 до N през 3

Да се напише програма, която отпечатва числата от 1 до n със стъпка 3. Например, ако n = 100, то резултатът ще е: 1, 4, 7, 10, …, 94, 97, 100.

Можем да решим задачата чрез следната поредица от действия (алгоритъм):

  • Четем числото n от входа на конзолата.
  • Изпълняваме for цикъл от 1 до n (включително и n) с размер на стъпката 3.
  • В тялото на цикъла отпечатваме стойността на текущата стъпка.

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#0.

Пример: числата от N до 1 в обратен ред

Да се напише програма, която отпечатва числата от n до 1 в обратен ред (стъпка -1). Например, ако n = 100, то резултатът ще е: 100, 99, 98, …, 3, 2, 1.

Можем да решим задачата по следния начин:

  • Четем числото n от входа на конзолата.
  • Създаваме for цикъл, от n до 0.
  • Дефинираме размера на стъпката: -1.
  • В тялото на цикъла отпечатваме стойността на текущата стъпка.

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#1.

Пример: числата от 1 до 2^n с for цикъл

В следващия пример ще разгледаме ползването на обичайната стъпка с размер 1.

Да се напише програма, която отпечатва числата от 1 до 2^n (две на степен n). Например, ако n = 10, то резултатът ще е 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024.

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#2.

Пример: четни степени на 2

Да се отпечатат четните степени на 2 до 2^n: 2^0, 2^2, 2^4, 2^8, …, 2^n. Например, ако n = 10, то резултатът ще е 1, 4, 16, 64, 256, 1024.

Ето как можем да решим задачата:

  • Създаваме променлива num за текущото число, на която присвояваме начална стойност 1.
  • За стъпка на цикъла задаваме стойност 2.
  • В тялото на цикъла: отпечатваме стойността на текущото число и увеличаваме текущото число num 4 пъти (според условието на задачата).

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#3.

While цикъл

Следващият вид цикли, с които ще се запознаем, се наричат while цикли. Специфичното при тях е, че повтарят блок от команди, докато дадено условие е истина. Като структура се различават от тази на for циклите, даже имат опростен синтаксис.

Какво представлява while цикълът?

В програмирането while цикълът се използва, когато искаме да повтаряме извършването на определена логика, докато е в сила дадено условие. Под "условие", разбираме всеки израз, който връща true или false. Когато условието стане грешно, while цикълът прекъсва изпълнението си и програмата продължава с изпълнението на кода след цикъла. Конструкцията за while цикъл изглежда по този начин:

Следва поредица от примерни задачи, решението на които ще ни помогне да разберем по-добре употребата на while цикъла.

Пример: редица числа 2k+1

Да се напише програма, която отпечатва всички числа ≤ n от редицата: 1, 3, 7, 15, 31, …, като приемем, че всяко следващо число = предишно число * 2 + 1.

Ето как можем да решим задачата:

  • Създаваме променлива num за текущото число, на която присвояваме начална стойност 1.
  • За условие на цикъла слагаме текущото число <= n.
  • В тялото на цикъла: отпечатваме стойността на текущото число и увеличаваме текущото число, използвайки формулата от условието на задачата.

Ето и примерна реализация на описаната идея:

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#4.

Пример: число в диапазона [1 … 100]

Да се въведе цяло число в диапазона [1 … 100]. Ако въведеното число е невалидно, да се въведе отново. В случая, за невалидно число ще считаме всяко такова, което не е в зададения диапазон.

За да решим задачата, можем да използваме следния алгоритъм:

  • Създаваме променлива n, на която присвояваме целочислената стойност, получена от входа на конзолата.
  • За условие на цикъла слагаме израз, който е true, ако числото от входа не е в диапазона посочен в условието.
  • В тялото на цикъла: отпечатваме съобщение със съдържание "Invalid number!" на конзолата, след което присвояваме нова стойност за n от входа на конзолата.
  • След като вече сме валидирали въведеното число, извън тялото на цикъла отпечатваме стойността на числото.

Ето и примерна реализация на алгоритъма чрез while цикъл:

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#5.

Най-голям общ делител (НОД)

Преди да продължим към следващата задача, е необходимо да се запознаем с определението за най-голям общ делител (НОД).

Определение за НОД: най-голям общ делител на две естествени числа a и b е най-голямото число, което се дели едновременно и на a, и на b без остатък. Например:

a b НОД
24 16 8
67 18 1
12 24 12
15 9 3
10 10 10
100 88 4

Алгоритъм на Евклид

В следващата задача ще използваме един от първите публикувани алгоритми за намиране на НОД - алгоритъм на Евклид:

Докато не достигнем остатък 0:

  • Делим по-голямото число на по-малкото.
  • Вземаме остатъка от делението.

Псевдо-код за алгоритъма на Евклид:

while b ≠ 0
  int oldB = b;
  b = a % b;
  a = oldB;
print а;

Пример: най-голям общ делител (НОД)

Да се подадат цели числа a и b и да се намери НОД(a, b).

Ще решим задачата чрез алгоритъма на Евклид:

  • Създаваме променливи a и b, на които присвояваме целочислени стойности, взети от входа на конзолата.
  • За условие на цикъла слагаме израз, който е True, ако числото b е различно от 0.
  • В тялото на цикъла следваме указанията от псевдо кода:
    • Създаваме временна променлива, на която присвояваме текущата стойност на b.
    • Присвояваме нова стойност на b, която е остатъка от делението на a и b.
    • На променливата a присвояваме предишната стойност на променливата b.
  • След като цикълът приключи и сме установили НОД, го отпечатваме на екрана.

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#6.

Do-while цикъл

Следващият цикъл, с който ще се запознаем, е do-while, който в превод означава прави-докато. По структура, той наподобява while, но има съществена разлика между тях. Тя се състои в това, че при do-while тялото се изпълнява поне веднъж. Защо се случва това? В конструкцията на do-while цикъла, условието винаги се проверява след тялото му, което от своя страна гарантира, че при първото завъртане на цикъла, кодът ще се изпълни, а проверката за край на цикъл ще се прилага върху всяка следваща итерация на do-while:

Следва обичайната поредица от примерни задачи, чиито решения ще ни помогнат да разберем по-добре do-while цикъла.

Пример: изчисляване на факториел

За естествено число n да се изчисли n! = 1 * 2 * 3 * … * n. Например, ако n = 5, то резултатът ще бъде: 5! = 1 * 2 * 3 * 4 * 5 = 120.

Ето как по-конкретно можем да пресметнем факториел:

  • Създаваме променливата n, на която присвояваме целочислена стойност взета от входа на конзолата.
  • Създаваме още една променлива - fact, чиято начална стойност е 1. Нея ще използваме за изчислението и съхранението на факториела.
  • За условие на цикъла ще използваме n > 1, тъй като всеки път, когато извършим изчисленията в тялото на цикъла, ще намаляваме стойността на n с 1.
  • В тялото на цикъла:
    • Присвояваме нова стойност на fact, която е резултат от умножението на текущата стойност на fact с текущата стойност на n.
    • Намаляваме стойността на n с -1.
  • Извън тялото на цикъла отпечатваме крайната стойност на факториела.

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#7.

Пример: сумиране на цифрите на число

Да се сумират цифрите на цяло положително число n. Например, ако n = 5634, то резултатът ще бъде: 5 + 6 + 3 + 4 = 18.

Можем да използваме следната идея, за да решим задачата:

  • Създаваме променливата n, на която присвояваме стойност, равна на въведеното от потребителя число.
  • Създаваме втора променлива - sum, чиято начална стойност е 0. Нея ще използваме за изчислението и съхранението на резултата.
  • За условие на цикъла ще използваме n > 0, тъй като след всяко изчисление на резултата в тялото на цикъла, ще премахваме последната цифра от n.
  • В тялото на цикъла:
    • Присвояваме нова стойност на sum, която е резултат от събирането на текущата стойност на sum с последната цифра на n.
    • Присвояваме нова стойност на n, която е резултат от премахването на последната цифра от n.
  • Извън тялото на цикъла отпечатваме крайната стойност на сумата.

n % 10: връща последната цифра на числото n.
n / 10: изтрива последната цифра на n.

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#8.

Безкрайни цикли и операторът break

До момента се запознахме с различни видове цикли, като научихме какви конструкции имат те и как се прилагат. Следва да разберем какво е безкраен цикъл, кога възниква и как можем да прекъснем изпълнението му чрез оператора break.

Безкраен цикъл. Що е то?

Безкраен цикъл наричаме този цикъл, който повтаря безкрайно изпълнението на тялото си. При while и do-while циклите проверката за край е условен израз, който винаги връща true. Безкраен for възниква, когато липсва условие за край. Ето как изглежда безкраен while цикъл:

А така изглежда безкраен for цикъл:

Оператор break

Вече знаем, че безкрайният цикъл изпълнява определен код до безкрайност, но какво става, ако желаем в определен момент при дадено условие, да излезем принудително от цикъла? На помощ идва операторът break, в превод - спри, прекъсни.

Операторът break спира изпълнението на цикъла към момента, в който е извикан, и продължава от първия ред след края на цикъла. Това означава, че текущата итерация на цикъла няма да бъде завършена до край и съответно останалата част от кода в тялото на цикъла няма да се изпълни.

Пример: прости числа

В следващата задача се изисква да направим проверка за просто число. Преди да продължим към нея, нека си припомним какво са простите числа.

Определение: едно цяло число е просто, ако се дели без остатък единствено на себе си и на 1. По дефиниция простите числа са положителни и по-големи от 1. Най-малкото просто число е 2.

Можем да приемем, че едно цяло число n е просто, ако n > 1 и n не се дели на число между 2 и n-1.

Първите няколко прости числа са: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, …

За разлика от тях, непростите (композитни) числа са такива числа, чиято композиция е съставена от произведение на прости числа.

Ето няколко примерни непрости числа:

  • 10 = 2 * 5
  • 42 = 2 3 7
  • 143 = 13 * 11

Алгоритъм за проверка дали дадено цяло число е просто: проверяваме дали n > 1 и дали n се дели на 2, 3, …, n-1 без остатък.

  • Ако се раздели на някое от числата, значи е композитно.
  • Ако не се раздели на никое от числата, значи е просто.
Можем да оптимизираме алгоритъма, като вместо проверката да е до n-1, да се проверяват делителите до √n. Помислете защо.

Пример: проверка за просто число. Оператор break

Да се провери дали едно число n е просто. Това ще направим като проверим дали n се дели на числата между 2 и √n.

Ето го алгоритъмът за проверка за просто число, разписан постъпково:

  • Създаваме променливата n, на която присвояваме цяло число въведено от входа на конзолата.
  • Създаваме булева променлива isPrime с начална стойност true. Приемаме, че едно число е просто до доказване на противното.
  • Създаваме for цикъл, на който като начална стойност за променливата на цикъла задаваме 2, за условие текущата ѝ стойност <= √n. Стъпката на цикъла е 1.
  • В тялото на цикъла проверяваме дали n, разделено на текущата стойност има остатък. Ако от делението няма остатък, то променяме isPrime на false и излизаме принудително от цикъла чрез оператор break.
  • В зависимост от стойността на isPrime отпечатваме дали числото е просто (true) или съответно съставно (false).

Ето и примерна имплементация на описания алгоритъм:

Оставаме да се провери дали входното число е по-голямо от 1, защото по дефиниция числата 0, 1, -1 и -2 не са прости.

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#9.

Пример: оператор break в безкраен цикъл

Да се напише програма, която проверява дали едно число n е четно, ако е - да се отпечатва на екрана. За четно считаме число, което се дели на 2 без остатък. При невалидно число да се връща към повторно въвеждане и да се изписва съобщение, което известява, че въведеното число не е четно.

Ето една идея как можем да решим задачата:

  • Създаваме променлива n, на която присвояваме начална стойност 0.
  • Създаваме безкраен while цикъл, като за условие ще зададем true.
  • В тялото на цикъла:
    • Вземаме целочислена стойност от входа на конзолата и я присвояваме на n.
    • Ако числото е четно, излизаме от цикъла чрез break.
    • В противен случай извеждаме съобщение, което гласи, че числото не е четно. Итерациите продължават, докато не се въведе четно число.
  • Отпечатваме четното число на екрана.

Ето и примерна имплементация на идеята:

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#10.

Вложени цикли и операторът break

След като вече научихме какво са вложените цикли и как работи операторът break, е време да разберем как работят двете заедно. За по-добро разбиране, нека стъпка по стъпка да напишем програма, която трябва да направи всички възможни комбинации от двойки числа. Първото число от комбинацията е нарастващо от 1 до 3, а второто е намаляващо от 3 до 1. Задачата трябва да продължи изпълнението си, докато i + j не е равно на 2 (т.е. i = 1 и j = 1).

Желаният резултат е:

Ето едно грешно решение, което изглежда правилно на пръв поглед:

Ако оставим програмата ни по този начин, резултатът ни ще е следният:

Защо се получава така? Както виждаме, в резултата липсва "1 1". Когато програмата стига до там, че i = 1 и j = 1, тя влиза в if проверката и изпълнява break операцията. По този начин се излиза от вътрешния цикъл, но след това продължава изпълнението на външния. i нараства, програмата влиза във вътрешния цикъл и принтира резултата.

Когато във вложен цикъл използваме оператора break, той прекъсва изпълнението само на вътрешния цикъл.

Какво е правилното решение? Един начин за решаването на този проблем е чрез деклариране на bool променлива, която следи за това, дали трябва да продължава въртенето на цикъла. При нужда от изход (излизане от всички вложени цикли), се променя стойността на променливата на true и се излиза от вътрешния цикъл с break, а при последваща проверка се напуска и външния цикъл. Ето и примерна имплементация на тази идея:

По този начин, когато i + j = 2, програмата ще направи променливата hasToEnd = true и ще излезе от вътрешния цикъл. При следващото завъртане на външния цикъл, чрез if проверката, програмата няма да може да стигне до вътрешния цикъл и ще прекъсне изпълнението си.

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#11.

Задачи с цикли

В тази глава се запознахме с няколко нови вида цикли, с които могат да се правят повторения с по-сложна програмна логика. Да решим няколко задачи, използвайки новите знания.

Задача: числа на Фибоначи

Числата на Фибоначи в математиката образуват редица, която изглежда по следния начин: 1, 1, 2, 3, 5, 8, 13, 21, 34, ….

Формулата за образуване на редицата е:

F0 = 1
F1 = 1
Fn = Fn-1 + Fn-2

Примерен вход и изход

Вход (n) Изход Коментар
10 89 F(11) = F(9) + F(8)
5 8 F(5) = F(4) + F(3)
20 10946 F(20) = F(19) + F(18)
0 1 -
1 1 -

Да се въведе цяло число n и да се пресметне n-тото число на Фибоначи.

Насоки и подсказки

Идея за решаване на задачата:

  • Създаваме променлива n, на която присвояваме целочислена стойност от входа на конзолата.
  • Създаваме променливите f0 и f1, на които присвояваме стойност 1, тъй като така започва редицата.
  • Създаваме for цикъл от нула до крайна стойност n - 1.
  • В тялото на цикъла:
    • Създаваме временна променлива fNext, на която присвояваме следващото число в поредицата на Фибоначи.
    • На f0 присвояваме текущата стойност на f1.
    • На f1 присвояваме стойността на временната променлива fNext.
  • Извън цикъла отпечатваме числото n-тото число на Фибоначи.

Примерна имплементация:

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#12.

Задача: пирамида от числа

Да се отпечатат числата 1 … n в пирамида като в примерите по долу. На първия ред печатаме едно число, на втория ред печатаме две числа, на третия ред печатаме три числа и т.н. докато числата свършат. На последния ред печатаме толкова числа, колкото останат докато стигнем до n.

Примерен вход и изход

Вход Изход Вход Изход Вход Изход
7 1
2 3
4 5 6
7
5 1
2 3
4 5
10 1
2 3
4 5 6
7 8 9 10

Насоки и подсказки

Можем да решим задачата с два вложени цикъла (по редове и колони) с печатане в тях и излизане при достигане на последното число. Ето идеята, разписана по-подробно:

  • Създаваме променлива n, на която присвояваме целочислена стойност, прочетена от конзолата.
  • Създаваме променлива num с начална стойност 1. Тя ще пази броя на отпечатаните числа. При всяка итерация ще я увеличаваме с 1 и ще я принтираме.
  • Създаваме външен for цикъл, който ще отговаря за редовете в таблицата. Наименуваме променливата на цикъла row и ѝ задаваме начална стойност 1. За условие слагаме row <= n. Размерът на стъпката е 1.
  • В тялото на цикъла създаваме вътрешен for цикъл, който ще отговаря за колоните в таблицата. Наименуваме променливата на цикъла col и ѝ задаваме начална стойност 1. За условие слагаме col <= row (row = брой цифри на ред). Размерът на стъпката е 1.
  • В тялото на вложения цикъл:
    • Проверяваме дали col > 1, ако да – принтираме разстояние. Ако не направим тази проверка, а директно принтираме разстоянието, ще имаме ненужно такова в началото на всеки ред.
    • Отпечатваме числото num в текущата клетка на таблицата и го увеличаваме с 1.
    • Правим проверка за num > n. Ако num е по-голямо от n, прекъсваме въртенето на вътрешния цикъл.
  • Отпечатваме празен ред, за да преминем на следващия.
  • Отново проверяваме дали num > n. Ако е по-голямо, прекъсваме изпълнението на програмата ни чрез break.

Ето и примерна имплементация:

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#13.

Задача: таблица с числа

Да се отпечатат числата 1 … n в таблица като в примерите по-долу.

Примерен вход и изход

Вход Изход Вход Изход
3 1 2 3
2 3 2
3 2 1
4 1 2 3 4
2 3 4 3
3 4 3 2
4 3 2 1

Насоки и подсказки

Можем да решим задачата с два вложени цикъла и малко изчисления в тях:

  • Четем от конзолата размера на таблицата в целочислена променлива n.
  • Създаваме for цикъл, който ще отговаря за редовете в таблицата. Наименуваме променливата на цикъла row и ѝ задаваме начална стойност 0. За условие слагаме row < n. Размерът на стъпката е 1.
  • В тялото на цикъла създаваме вложен for цикъл, който ще отговаря за колоните в таблицата. Наименуваме променливата на цикъла col и ѝ задаваме начална стойност 0. За условие слагаме col < n. Размерът на стъпката е 1.
  • В тялото на вложения цикъл:
    • Създаваме променлива num, на която присвояваме резултата от текущият ред + текущата колона + 1 (+1, тъй като започваме броенето от 0).
    • Правим проверка за num > n. Ако num е по-голямо от n, присвояваме нова стойност на num равна на два пъти n - текущата стойност за num. Това правим с цел да не превишаваме n** в никоя от клетките на таблицата.
      • Отпечатваме числото от текущата клетка на таблицата.
  • Отпечатваме празен ред във външния цикъл, за да преминем на следващия ред.

Тестване в Judge системата

Тествайте решението си тук: https://judge.softuni.org/Contests/Practice/Index/1368#14.

Какво научихме от тази глава?

Можем да използваме for цикли със стъпка:

for (int i = 1; i <= n; i += 3) {
   cout << i << endl;
}

Може да тествате примера онлайн: https://repl.it/@vncpetrov/ForLoopWithStep.

Циклите while / do-while се повтарят докато е в сила дадено условие:

int num = 1;
while (num <= n) {
   cout << num++ << endl;
}

Може да тествате примера онлайн: https://repl.it/@vncpetrov/WhileLoop.

Ако се наложи да прекъснем изпълнението на цикъл, го правим с оператора break:

int n = 0;

while (true) {
   cin >> n;

   if (n % 2 == 0) {
      break; // even number -> exit from the loop
   } 
   cout << "The number is not even." << endl;
} 
cout << "Even number entered: " << n << endl;

Може да тествате примера онлайн: https://repl.it/@vncpetrov/OperatorBreak.

results matching ""

    No results matching ""